Some Exponential Diophantine Equations. I. The Equation D1x2 − D2y2 = λkz

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Some Diophantine Equations (i)

In this paper we study the equation m−n = py,where p is a prime natural number, p≥ 3. Using the above result, we study the equations x + 6pxy + py = z and the equations ck(x 4 + 6pxy + py) + 4pdk(x y + pxy) = z, where the prime number p ∈ {3, 7, 11, 19} and (ck, dk) is a solution of the Pell equation, either of the form c −pd = 1 or of the form c − pd = −1. I. Preliminaries. We recall some nece...

متن کامل

On the Exponential Diophantine Equation

Let a, b, c be fixed positive integers satisfying a2 + ab + b2 = c with gcd(a, b) = 1. We show that the Diophantine equation a2x+axby+b2y = cz has only the positive integer solution (x, y, z) = (1, 1, 1) under some conditions. The proof is based on elementary methods and Cohn’s ones concerning the Diophantine equation x2 + C = yn. Mathematics Subject Classification: 11D61

متن کامل

Exponential Diophantine Equations

1. Historical introduction. Many questions in number theory concern perfect powers, numbers of the form a b where a and b are rational integers with <7>1, 6>1. To mention a few: (a) Is it possible that for /zs>3 the sum of two 77th powers is an /7th power? (b) Is 8, 9 the only pair of perfect powers which differ by 1 ? (c) Is it possible that the product of consecutive integers, (x+l)(x + 2) .....

متن کامل

The Exponential Diophantine Equation 2x + by = cz

Let b and c be fixed coprime odd positive integers with min{b, c} > 1. In this paper, a classification of all positive integer solutions (x, y, z) of the equation 2 (x) + b (y) = c (z) is given. Further, by an elementary approach, we prove that if c = b + 2, then the equation has only the positive integer solution (x, y, z) = (1,1, 1), except for (b, x, y, z) = (89,13,1, 2) and (2 (r) - 1, r + ...

متن کامل

On a Conjecture on Exponential Diophantine Equations

We deal with a conjecture of Terai (1994) asserting that if a, b, c are fixed coprime integers with min(a, b, c) > 1 such that a+b = c for a certain odd integer r > 1, then the equation a + b = c has only one solution in positive integers with min(x, y, z) > 1. Co-operation man-machine is needed for the proof.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1995

ISSN: 0022-314X

DOI: 10.1006/jnth.1995.1138